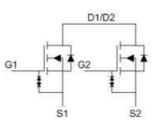


Dual N-Ch 20V Fast Switching MOSFET VDS=20V, ID=9.5A ,RDS(ON)=9.0mΩ

General Description

The PAN82TE04F the low RDSON trenched N-CH MOSFETs with robust ESD protection. This product is suitable for Lithium-ion battery pack applications. The efficiency for power switching and load switching application., this device also comply with the RoHS and Green Product requirement with full function reliability approved.

➢ <u>Feature</u>


- •Low drain-source ON resistance
- •Green Device Available
- ●ESD Protected Embedded
- •DFN2X3-6L package design

> <u>Application</u>

- Load Switch
- Portable Equipment
- Battery Powered System

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
Drain-Source Voltage	Vds	20	V
Gate-Source Voltage	Vgs	±12	V
Continuous Drain Current, Vgs @ 4.5V1	ID@TA=25°C	9.5	А
Continuous Drain Current, VGs @ 4.5V1	ID@TA=70°C	7.6	A
Pulsed Drain Current ₂	Ідм	60	А
Total Power Dissipation	Pd@Ta=25°C	1.56	W
Storage Temperature Range	Тѕтс	-55 to 150	°C
Operating Junction Temperature Range	TJ	-55 to 150	°C
Thermal Resistance Junction-Ambient ₁ (t ≤10s)	Reja	80	°C/W

Dual N-Ch 20V Fast Switching MOSFET

VDS=20V, ID=9.5A ,RDS(ON)=9.0mΩ

Electrical Characteristics (TJ=25°C Unless otherwise noted)

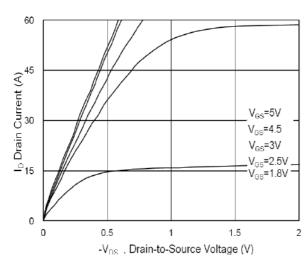
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Drain-Source Breakdown Voltage	BVDSS	Vgs=0V , Id=250uA	20			V	
		Vgs=4.5V , Id=5A	6.3	7.8	9		
		Vgs=4.0V,Id=5A	6.5	8.0	9.5		
Static Drain-Source On-Resistance2	RDS(ON)	Vgs=3.7V , Id=5A	6.7	8.2	10	mΩ	
		Vgs=3.1V , Id=5A	7.0	9.0	11.2		
		Vgs=2.5V , Ib=5A	8.0	10.5	13.5		
Gate Threshold Voltage	VGS(th)	Vgs=Vds , Id =250uA	0.5		1.2	V	
Drain Source Leekage Current	lace	Vps=16V , Vgs=0V , Tj=25°C			1		
Drain-Source Leakage Current	IDSS	V⊳s=16V , V₀s=0V , Tյ=55°C			5	uA	
Gate-Source Leakage Current	lgss	Vgs=±8V , Vds=0V			±10	uA	
Forward Transconductance	gfs	Vds=5V , Id=5.5A		38		S	
Total Gate Charge (4.5V)	Qg			22			
Gate-Source Charge	Qgs	Vds=15V , Vgs=4.5V , Id=5.5A		3.1		nC	
Gate-Drain Charge	Qgd			8.2			
Turn-On Delay Time	Td(on)			10			
Rise Time	Tr	Vdd=15V , Vgs=4.5V ,		39.5			
Turn-Off Delay Time	Td(off)	Rg=6ΩIb=5.5A		65		ns	
Fall Time	Tf			30		1	
Input Capacitance	Ciss			1647			
Output Capacitance	Coss	Vos=10V , Vos=0V , f=1MHz		170		pF	
Reverse Transfer Capacitance	Crss			148		1	

Diode Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Continuous Source Current1	ls	Vg=Vp=0V . Force Current			9.5	А
Pulsed Source Current2	lsм				60	А
Diode Forward Voltage2	Vsd	Vgs=0V , Is=9.5A , Tj=25°C			1.2	V

Note :

1.The data tested by surface mounted on a 1 inch₂ FR-4 board with 2OZ copper, t \leq 10s.


2.The data tested by pulsed , pulse width $\leq~$ 10us , duty cycle $\leq~$ 1%

Dual N-Ch 20V Fast Switching MOSFET

VDS=20V, ID=9.5A ,RDS(ON)=9.0m Ω

Typical Characteristics

Fig.1 Typical Output Characteristics

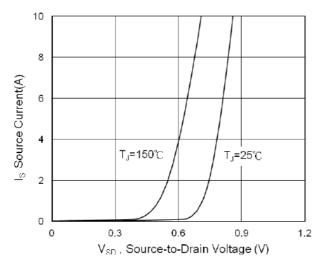


Fig.3 Forward Characteristics of Reverse

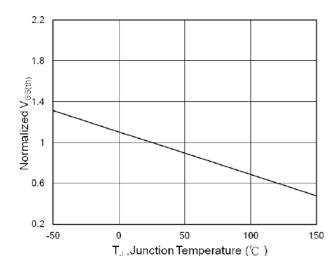


Fig.5 V_{GS(th)} vs. T_J

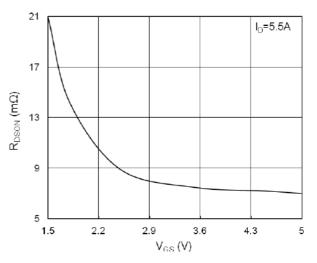


Fig.2 On-Resistance vs. G-S Voltage

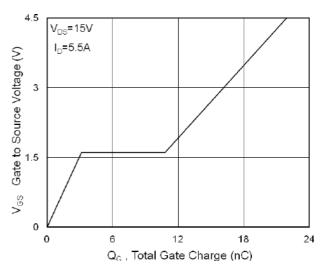
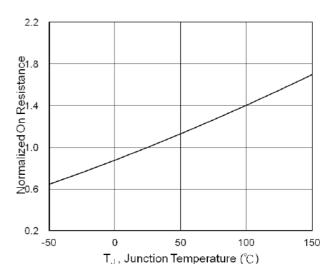
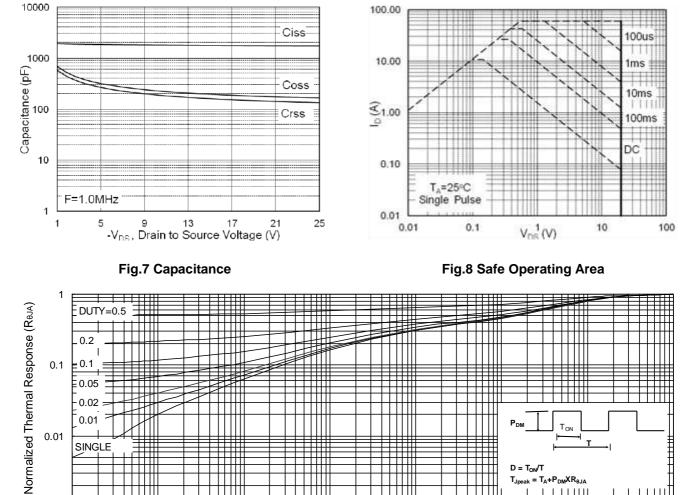
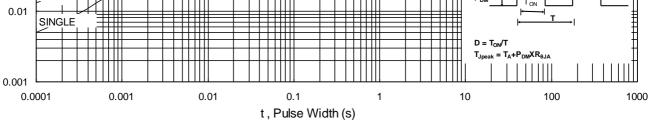


Fig.4 Gate-Charge Characteristics


Fig.6 Normalized R_{DSON} vs. T_J

3

Dual N-Ch 20V Fast Switching MOSFET VDS=20V, ID=9.5A ,RDS(ON)=9.0mΩ

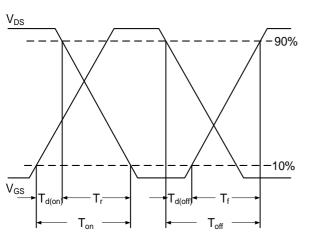
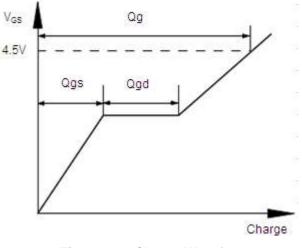
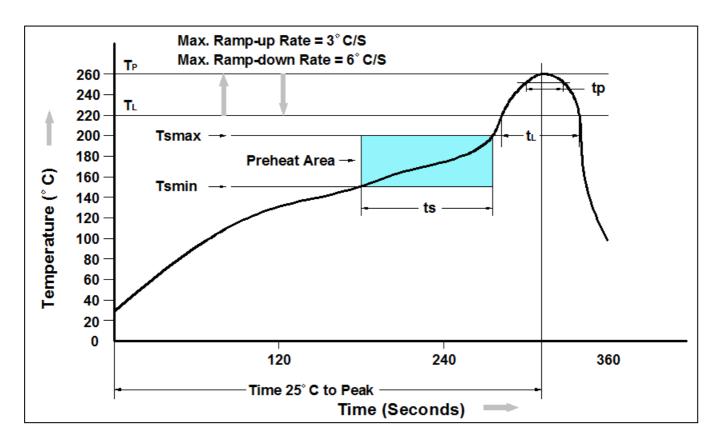


Fig.10 Switching Time Waveform



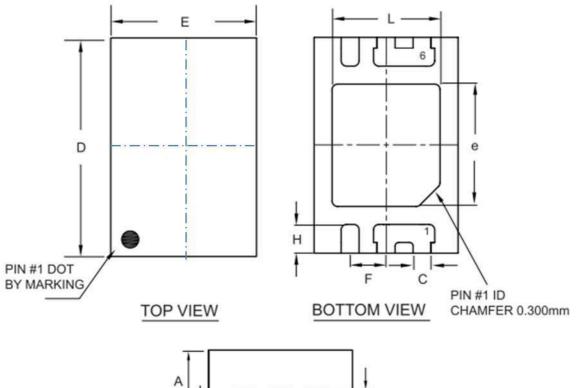

Fig.11 Gate Charge Waveform

Dual N-Ch 20V Fast Switching MOSFET

VDS=20V, ID=9.5A ,RDS(ON)=9.0mΩ

Recommand IR Reflow Soldering Thermal Profile

Profile Feature	Pb-Free Assembly Profile	
Temperature Min. (Tsmin)	150°C	
Temperature Max. (Tsmax)	200°C	
Time (ts) from (Tsmin to Tsmax)	60-120 seconds	
Average Ramp-up Rate (tL to tP)	3°C/second max.	
Liquidous Temperature (TL)	217°C	
Time (tL) Maintained Above (TL)	60 – 150 seconds	
Peak Temperature 260°C +0°C /		
Time (tP) within 5°C of actual Peak Temperature	30 seconds	
Ramp-down Rate (TP to TL) 6°C/second m		
Time 25°C to Peak Temperature 8 minutes m		


Ordering Information

Part Number	Description	Quantity
PAN82TE04F	DFN2X3-6L Reel	3000 pcs

Dual N-Ch 20V Fast Switching MOSFET VDS=20V, ID=9.5A ,RDS(ON)=9.0mΩ

Package Information (DFN2X3-6L)

A,		Ļ
ᅶᆣ		
A1 🕇	SIDE VIEW	T

	MILLIM	ETERS	INCHES		
SYMBOLS	MIN	MAX	MIN	MAX	
A	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
D	2.950	3.050	0.116	0.120	
E	1.950	2.050	0.077	0.081	
н	0.350	0.450	0.014	0.018	
L	1.450	1.550	0.057	0.061	
е	1.650	1.750	0.065	0.069	
В	0.195	0.211	0.0076	0.008	
С	0.200	0.300	0.008	0.012	
F	0.500 BSC		0.020	BSC	

Dual N-Ch 20V Fast Switching MOSFET VDs=20V, ID=9.5A ,RDS(ON)=9.0mΩ

DISCLAIMER

- The information in this document and any product described herein are subject to change without notice and should not be construed as a commitment by Paceleader, Paceleader reserve the right to make changes to the information in this document.
- Though Paceleader make effort to improve product quality and reliability, Product can malfunction and fail due to their inherent electrical sensitivity and vulnerability to physical stress, it is the responsibility of the customer, when utilizing Paceleader products, to comply with the standards of safety in making a safe design for entire system and to avoid situation in which a malfunction or failure., In developing a new designs, customer should ensure that the device which shown in this documents are used within specified operating ranges.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Paceleader for any infringements of patents or other rights of the third parties which may result from its use.