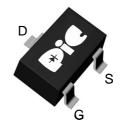
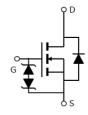


N-Ch 60V Fast Switching MOSFET

VDS=60V, ID=0.3A, RDS(ON)=3000m Ω


> General Description


This PAN7002KWR N-Channel enhancement mode power field effect transistor is the high density trench technology and this advanced technology can provide excellent Rds(On) performance and efficiency for power switching and load switching application., this device also comply with the RoHS and Green Product requirement with full function reliability approved.

Feature

- ●Low on resistance RDS(ON)
- Low gate threshold voltage
- ●Low input capacitance
- ●ESD protected up to 1KV
- ●SOT-323 package design

> <u>SOT-323</u>

> Application

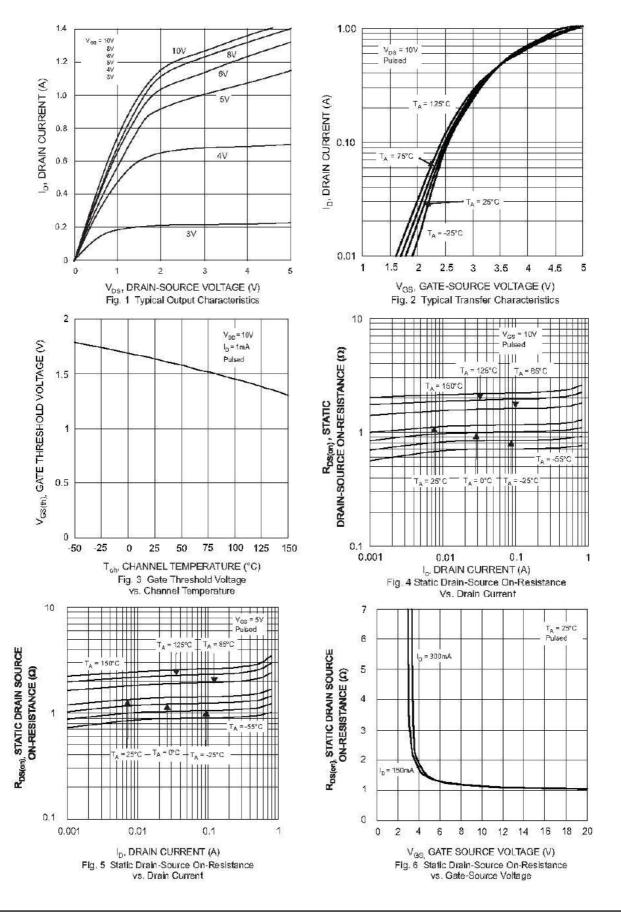
- Portable Equipment
- Battery Powered System
- Net Working System

Maximum Ratings (TA=25°C Unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$V_{ m DSS}$	60	V
Gate-Source Voltage	V_{GSS}	±20	V
Drain Current (Continuous)	I_D	300	mA
Drain Current(Pulse Width ≤ 10 μs)	I_{DM}	800	mA
Total Power Dissipation	P _{tot}	200	mW
Operating and Storage Temperature Range	T_j , T_{stg}	- 55 to + 150	$^{\circ}$

N-Ch 60V Fast Switching MOSFET

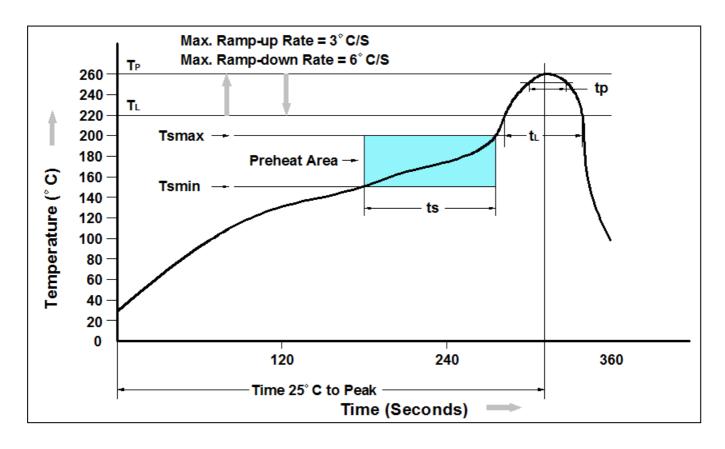
$\label{eq:Vds=60V} V_{\text{DS}}\!=\!60\text{V, Id}\!=\!0.3\text{A, RDS}(\text{on})\!=\!3000m\Omega$


Electrical Characteristics (TA=25°C Unless otherwise specified)

Parameter	Test Conditions	Symbol	Min.	Max.	Unit
Drain Source Breakdown Voltag	$I_D = 10 \mu A$	BV_{DSS}	60	-	V
Zero Gate Voltage Drain Current	$V_{DS} = 60 \text{ V}$	I_{DSS}	-	1	μΑ
Gate Source Leakage Current	$V_{GS} = \pm 20 \text{ V}$	I_{GSS}	-	±10	μΑ
Gate Threshold Voltage	$V_{DS} = 10V, I_D = 250 \mu A$	$V_{GS(th)}$	1.0	2.5	V
Static Drain Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 500 \text{ mA}$	D	-	3	Ω
	$V_{GS} = 4.5 \text{ V}, I_D = 200 \text{ mA}$	$R_{DS(ON)}$	-	4	
Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 200 \text{ mA}$	g_{FS}	80	-	mS
Input Capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	C _{iss}	-	50	pF
Output Capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	C_{oss}	-	25	pF
Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	C_{rss}	-	5	pF

N-Ch 60V Fast Switching MOSFET VDs=60V, ID=0.3A, RDS(ON)=3000m Ω

Typical Characteristics

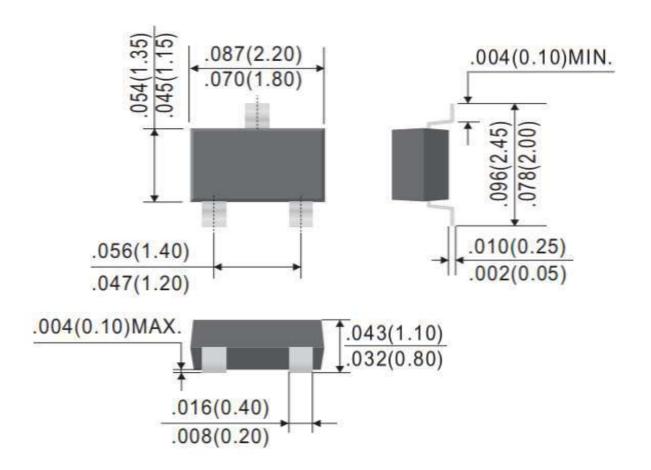


N-Ch 60V Fast Switching MOSFET

VDS=60V, ID=0.3A, RDS(ON)=3000m Ω

Recommand IR Reflow Soldering Thermal Profile

Profile Feature	Pb-Free Assembly Profile		
Temperature Min. (Tsmin)	150°C		
Temperature Max. (Tsmax)	200°C		
Time (ts) from (Tsmin to Tsmax)	60-120 seconds		
Average Ramp-up Rate (tL to tP)	3°C/second max.		
Liquidous Temperature (TL)	217°C		
Time (tL) Maintained Above (TL)	60 – 150 seconds		
Peak Temperature	260°C +0°C /-5°C		
Time (tP) within 5°C of actual Peak Temperature	30 seconds		
Ramp-down Rate (TP to TL)	6°C/second max		
Time 25°C to Peak Temperature	8 minutes max.		


Ordering Information

Part Number	Description	Quantity
PAN7002KWR	SOT-323 Reel	3000 pcs

N-Ch 60V Fast Switching MOSFET VDs=60V, ID=0.3A, RDS(ON)=3000m Ω

Package Information (SOT-323)

Dimensions in inch and (millimeter)

N-Ch 60V Fast Switching MOSFET VDs=60V, ID=0.3A, RDS(ON)=3000m Ω

DISCLAIMER

- The information in this document and any product described herein are subject to change without notice and should not be construed as a commitment by Paceleader, Paceleader reserve the right to make changes to the information in this document.
- Though Paceleader make effort to improve product quality and reliability, Product can malfunction and fail due to their inherent electrical sensitivity and vulnerability to physical stress, it is the responsibility of the customer, when utilizing Paceleader products, to comply with the standards of safety in making a safe design for entire system and to avoid situation in which a malfunction or failure., In developing a new designs, customer should ensure that the device which shown in this documents are used within specified operating ranges.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Paceleader for any infringements of patents or other rights of the third parties which may result from its use.