$>$ General Description

This PAN00TF16GF N-Channel enhancement mode power field effect transistor is the high density trench technology and this advanced technology can provide excellent Rds(On) performance and efficiency for power switching and load switching application., this device also comply with the RoHS and Green Product requirement with full function reliability approved.

Feature

- Super Low Gate Charge
- 100\% EAS Guaranteed
- Green Device Available
- Excellent Cdv /dt effect decline
- Advanced high cell density Trenchtechnology

- Application

- SMPS Power Supplier

- Charger Adapter
- Power Tools
- LED Lighting

> Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
Drain-Source Voltage	Vos	100	V
Gate-Source Voltage	VGs	± 20	V
Continuous Drain Current, Vas @ 10V1	ID@TC=25 ${ }^{\circ} \mathrm{C}$	17.5	A
Continuous Drain Current, VGs @ 10V ${ }_{1}$	$\mathrm{lo} @ \mathrm{Tc}=100^{\circ} \mathrm{C}$	11	A
Continuous Drain Current, Vas @ 10V1	$1 \mathrm{O} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.2	A
Continuous Drain Current, VGs @ 10V1	$1 \mathrm{l} @ \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	3.4	A
Pulsed Drain Current2	Idm	54	A
Single Pulse Avalanche Energy ${ }^{\text {a }}$	EAS	36.5	mJ
Avalanche Current	las	27	A
Total Power Dissipation4	$\mathrm{Po} @ \mathrm{Tc}=25^{\circ} \mathrm{C}$	34.7	W
Total Power Dissipation4	$\mathrm{Pb} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2	W
Storage Temperature Range	Tsta	-55 to 150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction-ambient 1	RөJA	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction-Case ${ }_{1}$	Rejc	3.6	${ }^{\circ} \mathrm{C} / \mathrm{N}$

Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=\mathbf{2 5 ^ { \circ } \mathrm { C } \text { Unless otherwise noted) }}$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Drain-Source Breakdown Voltage	BVoss	VGs=0V , Id=250uA	100	---	---	V
BVDSS Temperature Coefficient	$\triangle \mathrm{BV}$ dss/ \triangle TJ	Reference to $25^{\circ} \mathrm{C}, \mathrm{ld}=1 \mathrm{~mA}$	---	0.098	---	V/ ${ }^{\circ} \mathrm{C}$
Static Drain-Source On-Resistance2	Ros(on)	VGs=10V, ld=20A	---	---	47	$\mathrm{m} \Omega$
		$\mathrm{VGS}=4.5 \mathrm{~V}, \mathrm{ld}=15 \mathrm{~A}$	---	---	50	
Gate Threshold Voltage	VGS(th)	$\mathrm{VGS}=\mathrm{V}$ ds , ID $=250 \mathrm{~A}$	1.0	---	2.5	V
VGS(th) Temperature Coefficient	$\Delta \operatorname{VGS}(\mathrm{th})$		---	-5.52	---	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Drain-Source Leakage Current	ldss	Vds $=80 \mathrm{~V}$, VGs $=0 \mathrm{~V}, \mathrm{TJ}=25^{\circ} \mathrm{C}$	---	---	10	uA
		Vds $=80 \mathrm{~V}$, VGs $=0 \mathrm{~V}, \mathrm{TJ}=55^{\circ} \mathrm{C}$	---	---	100	
Gate-Source Leakage Current	Igss	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{VDS}=0 \mathrm{~V}$	---	---	± 100	nA
Forward Transconductance	gfs	V ds $=5 \mathrm{~V}$, Id=15A	---	31	---	S
Gate Resistance	Rg	VdS $=0 \mathrm{~V}$, VGS $=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	---	1.6	---	Ω
Total Gate Charge (10V)	Qg	Vds $=80 \mathrm{~V}$, VGS $=10 \mathrm{~V}$, ID=15A	---	61	---	nC
Gate-Source Charge	Qgs		---	9	---	
Gate-Drain Charge	Qgd		---	10.3	---	
Turn-On Delay Time	Td(on)	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=50 \mathrm{~V}, \mathrm{VGS}=10 \mathrm{~V}, \\ & \mathrm{RG}_{\mathrm{G}}=3.3 \Omega \mathrm{ID}_{\mathrm{D}}=15 \mathrm{~A} \end{aligned}$	---	10.8	---	ns
Rise Time	Tr		---	48	---	
Turn-Off Delay Time	Td(off)		---	52	---	
Fall Time	Tf		---	9.6	---	
Input Capacitance	Ciss	Vds=15V , VGs=0V , f= 1 MHz	---	3848	---	pF
Output Capacitance	Coss		---	137	---	
Reverse Transfer Capacitance	Crss		---	82	---	

Diode Characteristics

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Continuous Source Current1,5	Is	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$, Force Current	---	---	17.5	A
Pulsed Source Current2,5	Ism		---	---	54	A
Diode Forward Voltage2	Vsd	VGs $=0 \mathrm{~V}, \mathrm{Is}=1 \mathrm{~A}, \mathrm{TJ}=25^{\circ} \mathrm{C}$	---	---	1.2	V
Reverse Recovery Time	tr	$\mathrm{IF}=15 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{T}=25^{\circ} \mathrm{C}$	---	29	---	nS
Reverse Recovery Charge	Qrr		---	40	---	nC

Note:
1.Pulse width limited by maximum junction temperature.
2.The data tested by pulsed, pulse width $\leqq 300$ us, duty cycle $\leqq 2 \%$
3.The EAS data shows Max. rating . The test condition is $\mathrm{V}_{\mathrm{dD}}=25 \mathrm{~V}, \mathrm{VGS}=10 \mathrm{~V}, \mathrm{~L}=0.1 \mathrm{mH}, \mathrm{I}_{\mathrm{As}}=27 \mathrm{~A}$
4.Ensure that the channel temperature does not exceed $150^{\circ} \mathrm{C}$.
5.The data is theoretically the same as ID and IDM , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig. 1 Typical Output Characteristics

Fig. 3 Forward Characteristics Of Reverse

Fig. 5 Normalized $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ vs. T_{J}

Fig. 2 On-Resistance vs. Gate-Source

Fig. 4 Gate-Charge Characteristics

Fig. 6 Normalized R dson $^{\text {vs. }} \mathrm{T}_{\mathrm{J}}$

PAN00TF16GF
N-Ch 100V Fast Switching MOSFET
$V_{D s}=100 \mathrm{~V}, I_{\mathrm{D}}=17.5 \mathrm{~A}, \mathrm{RDS}(\mathrm{on})=47 \mathrm{~m} \Omega$

Fig. 7 Capacitance

Fig. 8 Safe Operating Area

Fig. 9 Normalized Maximum Transient Thermal Impedance

Fig. 10 Switching Time Waveform

Fig. 11 Unclamped Inductive Switching Waveform

$>$ Recommand IR Reflow Soldering Thermal Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	$150^{\circ} \mathrm{C}$
Temperature Max. (Tsmax)	$200^{\circ} \mathrm{C}$
Time (ts) from (Tsmin to Tsmax)	$60-120$ seconds
Average Ramp-up Rate (tL to tP)	$3^{\circ} \mathrm{C} /$ second max.
Liquidous Temperature (TL)	$217^{\circ} \mathrm{C}$
Time (tL) Maintained Above (TL)	$60-150$ seconds
Peak Temperature	$260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Time (tP) within $5^{\circ} \mathrm{C}$ of actual Peak Temperature	30 seconds
Ramp-down Rate (TP to TL)	$6^{\circ} \mathrm{C} /$ second max
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 minutes max.

Ordering Information

Part Number	Description	Quantity
PAN00TF16GF	TO-220F $/ 50 \mathrm{pcs} / \mathrm{tube}$	1000 pcs

PAN00TF16GF
N-Ch 100V Fast Switching MOSFET
$V_{D s}=100 \mathrm{~V}, I_{\mathrm{D}}=17.5 \mathrm{~A}, \mathrm{RDS}(\mathrm{on})=47 \mathrm{~m} \Omega$

$>$ Package Information (TO-220F)

SYMBOLS	MILLMETERS		INCHES	
	Min.	Max.	Min.	Max.
A	-	10.50	-	0.414
B	2.60	3.00	0.102	0.118
C	6.70	7.10	0.264	0.280
D	2.90	3.50	0.114	0.138
E	13.10	13.90	0.516	0.548
F	-	4.00	-	0.158
G	1.11	1.45	0.044	0.057
H	0.40	0.80	0.016	0.032
I	2.40	2.80	0.095	0.110
J	5.00	5.40	0.197	0.213
K	4.30	4.70	0.169	0.185
L	2.90	3.30	0.114	0.130
M	8.20	9.00	0.323	0.355
N	2.50	2.90	0.099	0.114
O	0.40	0.80	0.016	0.032

DISCLAIMER

- The information in this document and any product described herein are subject to change without notice and should not be construed as a commitment by Paceleader, Paceleader reserve the right to make changes to the information in this document.
- Though Paceleader make effort to improve product quality and reliability, Product can malfunction and fail due to their inherent electrical sensitivity and vulnerability to physical stress, it is the responsibility of the customer, when utilizing Paceleader products, to comply with the standards of safety in making a safe design for entire system and to avoid situation in which a malfunction or failure., In developing a new designs, customer should ensure that the device which shown in this documents are used within specified operating ranges.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Paceleader for any infringements of patents or other rights of the third parties which may result from its use.

